A new method for estimating the demographic history from DNA sequences: an importance sampling approach

نویسندگان

  • Sadoune Ait Kaci Azzou
  • Fabrice Larribe
  • Sorana Froda
چکیده

The effective population size over time (demographic history) can be retraced from a sample of contemporary DNA sequences. In this paper, we propose a novel methodology based on importance sampling (IS) for exploring such demographic histories. Our starting point is the generalized skyline plot with the main difference being that our procedure, skywis plot, uses a large number of genealogies. The information provided by these genealogies is combined according to the IS weights. Thus, we compute a weighted average of the effective population sizes on specific time intervals (epochs), where the genealogies that agree more with the data are given more weight. We illustrate by a simulation study that the skywis plot correctly reconstructs the recent demographic history under the scenarios most commonly considered in the literature. In particular, our method can capture a change point in the effective population size, and its overall performance is comparable with the one of the bayesian skyline plot. We also introduce the case of serially sampled sequences and illustrate that it is possible to improve the performance of the skywis plot in the case of an exponential expansion of the effective population size.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Analysis of Evolutionary Divergence with Genomic Data under Diverse Demographic Models.

We present a new Bayesian method for estimating demographic and phylogenetic history using population genomic data. Several key innovations are introduced that allow the study of diverse models within an Isolation-with-Migration framework. The new method implements a 2-step analysis, with an initial Markov chain Monte Carlo (MCMC) phase that samples simple coalescent trees, followed by the calc...

متن کامل

Development of an Efficient Hybrid Method for Motif Discovery in DNA Sequences

This work presents a hybrid method for motif discovery in DNA sequences. The proposed method called SPSO-Lk, borrows the concept of Chebyshev polynomials and uses the stochastic local search to improve the performance of the basic PSO algorithm as a motif finder. The Chebyshev polynomial concept encourages us to use a linear combination of previously discovered velocities beyond that proposed b...

متن کامل

Estimating recombination rates from population genetic data.

We introduce a new method for estimating recombination rates from population genetic data. The method uses a computationally intensive statistical procedure (importance sampling) to calculate the likelihood under a coalescent-based model. Detailed comparisons of the new algorithm with two existing methods (the importance sampling method of Griffiths and Marjoram and the MCMC method of Kuhner an...

متن کامل

Bayesian coalescent inference of past population dynamics from molecular sequences.

We introduce the Bayesian skyline plot, a new method for estimating past population dynamics through time from a sample of molecular sequences without dependence on a prespecified parametric model of demographic history. We describe a Markov chain Monte Carlo sampling procedure that efficiently samples a variant of the generalized skyline plot, given sequence data, and combines these plots to g...

متن کامل

Mitochondrial DNA variation, genetic structure and demographic history of Iranian populations

In order to survey the evolutionary history and impact of historical events on the genetic structure of Iranian people, the HV2 region of 141 mtDNA sequences related to six Iranian populations were analyzed. Slight and non-significant FST distances among the Central-western Persian speaking populations of Iran testify to the common origin of these populations from one proto-population. Mismatch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015